Learning Feature Hierarchies for Object Recognition
نویسنده
چکیده
In this thesis we study unsupervised learning algorithms for training feature extractors and building deep learning models. We propose sparse-modeling algorithms as the foundation for unsupervised feature extraction systems. To reduce the cost of the inference process required to obtain the optimal sparse code, we model a feed-forward function that is trained to predict this optimal sparse code. Using an efficient predictor function enables the use of sparse coding in hierarchical models for object recognition. We demonstrate the performance of the developed system on several recognition tasks, including object recognition, handwritten digit classification and pedestrian detection. Robustness to noise or small variations in the input is a very desirable property for a feature extraction algorithm. In order to train locally-invariant feature extractors in an unsupervised manner, we use group sparsity criteria that promote similarity between the dictionary elements within a group. This model produces locally-invariant representations under small perturbations of the input, thus improving the robustness of the features. Many sparse modeling algorithms are trained on small image patches that are the same size as the dictionary elements. This forces the system to learn multiple shifted versions of each dictionary element. However, when used convolutionally over large images to extract features, these models produce very redundant representations. To avoid this problem, we propose convolutional sparse coding algorithms that yield a richer set of dictionary elements, reduce the redundancy of the representation and improve recognition performance.
منابع مشابه
A Biologically Motivated System for Unconstrained Online Learning of Visual Objects
We present a biologically motivated system for object recognition that is capable of online learning of several objects based on interaction with a human teacher. The training is unconstrained in the sense that arbitrary objects can be freely presented in front of a stereo camera system and labeled by speech input. The architecture unites biological principles such as appearance-based represent...
متن کاملDeep Learning Layer-wise Learning of Feature Hierarchies
Hierarchical neural networks for object recognition have a long history. In recent years, novel methods for incrementally learning a hierarchy of features from unlabeled inputs were proposed as good starting point for supervised training. These deep learning methods— together with the advances of parallel computers—made it possible to successfully attack problems that were not practical before,...
متن کاملAssisting the training of deep neural networks with applications to computer vision
Deep learning has recently been enjoying an increasing popularity due to its success in solving challenging tasks. In particular, deep learning has proven to be effective in a large variety of computer vision tasks, such as image classification, object recognition and image parsing. Contrary to previous research, which required engineered feature representations, designed by experts, in order t...
متن کاملLearning Invariant Feature Hierarchies
Fast visual recognition in the mammalian cortex seems to be a hierarchical process by which the representation of the visual world is transformed in multiple stages from low-level retinotopic features to high-level, global and invariant features, and to object categories. Every single step in this hierarchy seems to be subject to learning. How does the visual cortex learn such hierarchical repr...
متن کاملFeature selection and information fusion in hierarchical neural networks for iterative 3D-object recognition
The reliable recognition of three-dimensional objects from two-dimensional camera images is still a major problem in computer vision and artificial intelligence. For this problem exist numerous approaches which in general neither incorporate the inherent hierarchical nature of classification problems nor offer the possibility to learn new objects during the exploration phase. Object recognition...
متن کامل